Ekso Bionics: Acquired Brain Injury Rehabilitation Case

Many people with an acquired brain injury (ABI) are told they will never walk again. Fortunately, our newly developed, cutting-edge wearable robot EksoNR© has allowed many patients with ABI to regain their mobility.

EksoNR is a mechanized exoskeleton that aligns with the wearer’s anatomy to provide the support and assistance they need during rehabilitation. EksoNR is the first and only exoskeleton for ABI rehabilitation to be cleared by the FDA. It fits snugly over the patient’s legs, feet, hips, and waist to support their weight and joints.

Designed by clinicians for clinicians, EksoNR is the most widely studied rehabilitation exoskeleton available. As of July 2020, there are 74 completed clinical research studies and countless publications and white papers involving EksoNR. These studies contain the personal experiences of more than 1,800 participants around the world.

Read how EksoNR has helped one of our users regain her mobility and walk again.

Kylie’s Rehabilitation

After Kylie was injured in 2019, she went into a coma. According to Dr. Kenneth Shapiro, who specializes in Physical Medicine and Rehab, her condition was serious. She had an ABI in addition to multiple internal injuries. She recovered consciousness and soon began physical therapy. Kylie was able to regain amazing levels of self-initiated movement with the help of the EksoNR bionic exoskeleton.

Her physical therapist, Erin, related that Kylie regained much of her mobility using the EksoNR exoskeleton. “In the first session, we took maybe ten steps,” Erin shared. “And now she’s walking over 1,200 steps.” This sort of progress is spectacular in patients with ABI injuries. Considering the extent of Kylie’s injuries, this may not have been possible without EksoNR.

EksoNR has helped Kylie maintain her muscle condition and start walking again using the power of brain plasticity. With Erin’s guidance, Kylie worked on vital skills including shifting her weight, balancing, and improving her lower extremity muscle strength while wearing the device. As her gait became stronger and more confident, Kylie shifted from relying on EksoNR to using her own muscles to walk. Eventually, she only relied on EksoNR to correct any errors she madewhile walking.

How Does EksoNR Help ABI Patients Regain Their Ability to Walk?

Kylie’s story is a great illustration of how EksoNR can help people with ABI to stand and walk again.

Unlike many other exoskeletons, which provide all or nearly all of the power needed to walk, EksoNR is designed to challenge patients. With its high, stiff back and various progressive modes, EksoNR requires active participation in the rehabilitation process, so the patient can:

  • Learn the most efficient and highest quality gait pattern
  • Develop a natural gait with secure practice
  • Improve their functional balance
  • Improve gait speed 
  • Improve walking distance

The following features also make EksoNR for ABI the ideal choice for patients to learn to walk again:

  • Unique design helps the patient focus on movement and balance
  • Data capture allows the physical therapist and patient to view session-specific speed, walking time, and distance. This information is saved securely in cloud storage for reference and analytics. It can be used by the physical therapist to provide personalized care.
  • Clinician control lets the physical therapist set training goals and modify EksoNR’s support and assistance levels for each leg
  • Adaptive gait training uses software and sensors to regulate and observe leg movement to promote gait development and strengthening
  • Pre-ambulatory tools such as PreGait help patients balance, squat, weightshift, and step in place before walking
  • SmartAssist software helps the physical therapist customize motor support depending on the patient’s impairment level.
    • This featured function allowed Kylie to move from full assistance to patient-initiated movement as she regained strength and coordination
  • Posture support allows for easier and faster recovery by helping patients get started on their gait training sooner 

Physical therapists can also use EksoNR at any stage of outpatient or inpatient rehabilitation.

Edward Cruz, a physical therapist at the University of Texas Southwestern Medical Center, recounted Kylie’s case. He believes EksoNR is “a good intervention for early mobilization [that taps] into neuroplasticity expediently and more successfully,” compared to the body-weight support treadmills physical therapists often use for patients with ABI.

Learn More about EksoNR

To learn more about how EksoNR can help patients with ABI improve their gait and regain their mobility, request a demo for your practice.

EksoNR is only one of the many wearable exoskeletons that Ekso Bionics has developed for rehabilitation. Contact us today to learn more about how we can help your practice.

Robotic Rehab Options for Spinal Cord Injury

Many people with spinal cord injury (SCI) experience some kind of paralysis or weakness. They are often told that they will never regain their mobility.

However, our wearable robots have proven many of these assumptions wrong. By providing physical support to patients’ limbs and joints when they are relearning how to walk during the rehabilitation process, our wearable robots can give people who have experienced an SCI a sense of freedom as they regain mobility.

Our wearable robots train patients to walk as naturally as possible, rather than having them follow a more robotic gait pattern as with some exoskeleton suits. They also aim to improve and develop walking endurance and posture without harming or stressing other joints and muscles.

Ekso is available in more than 30 countries around the world and has helped thousands of patients take more than 130 million steps.

If you are interested in learning more about Ekso as one of the rehab options for spinal cord injury, contact a center near you to get started. Note, however, that our wearable robots are not for personal or home use and are available only in certified rehabilitation centers. This is to ensure that Ekso’s wearable robots are used safely and properly.

Find out more about how to rehabilitate SCI with our wearable robots below.

EksoNR©: Our Lower Extremity Exoskeleton

EksoNR© is our lower extremity medical exoskeleton and one of our rehab tools for spinal cord injury. The only exoskeleton to be cleared by the FDA for use on patients with SCI, stroke, and acquired brain injury, EksoNR is an effective way of retraining the muscles and reteaching the brain to walk.

With the help of EksoNR, patients will learn how to balance and walk again during rehabilitation after SCI. EksoNR also comes with powerful technology that calculates gait inefficiencies, which will help clinicians and physical therapists set goals and record patient progress.

Unlike some other exoskeletons, EksoNR promotes brain plasticity by challenging patients through active participation. Attaching comfortably to the thighs, hips, and waist, EksoNR is designed to be used with many different body shapes and sizes and fits patients under 220 pounds who are between 5 feet and 6 feet, 4 inches.)

EksoNR has the following features:

  • Data capture. Allows viewing of session-specific walking time, speed, and distance. All data is saved onto a cloud-based dashboard.
  • Long-lasting. Comes with two sets of rechargeable lithium-ion batteries, allowing for continuous use.
  • Clinician control. Provides real-time modification of assistance levels for each leg based on session feedback and patient goals. It also sets training targets.
  • SmartAssist software. Allows customization of motor support during swing and stance phases of walking for different levels of impairment, from full assistance to patient-initiated movement.
  • Adaptive gait training. To minimize compensatory gait patterns, software and sensors constantly regulate and monitor leg movement.
  • Posture support. EksoNR offers posture support with a high, rigid back and helps patients bear only their own weight with proper postural alignment. 
  • Pre-ambulatory tools. EksoNR comes with preGait, a set of programs that help patients balance, step in place, squat, and weight shift before walking.

EksoUE©: Our Upper Extremity Exoskeleton

EksoUE© is an upper extremity wearable exoskeleton that fits snugly over the arm and shoulder. It gives patients a wider active range of motion with assistance in all planes.

Designed for patients with extremity weakness or paralysis due to SCI and other injuries, EksoUE helps patients recover and build strength, range of motion, and endurance. Lightweight and mobile, EksoUE can be used while sitting, moving, or standing.

EksoUE has the following features:

  • Manual therapy access. Helps therapists facilitate movement by providing access to the scapula and shoulder joint.
  • 180 degrees of assisted motion. Allows the patient to have a wider, more varied active range of motion and assists in all planes.
  • Natural movement pattern. Allows for more natural movements than traditional therapy or other devices by supporting the patient’s arm with minimal interference.
  • Multifaceted use cases. Can be used while moving around, standing, or sitting. EksoUE is not connected to static equipment, so it can be worn while doing daily activities, with other technologies, or gaming.
  • Fully mechanical operation. Instead of being powered by batteries, EksoUE is spring-powered, allowing for continuous use without recharging.
  • Increased workload. With EksoUE, patients can tolerate higher therapy dosages for longer periods.
  • Adaptable ergonomics and assistance. Adaptable and easily reconfigured for different patient sizes and ability levels.
  • Easy to set up and use. Includes a self-guided online course for therapists consisting of modules on both able-bodied individuals and patients.

What Is the Difference Between Acquired Brain Injury and Traumatic Brain Injury?

Rehabilitation for brain injury depends on a thorough understanding of the neural damage involved. All traumatic brain injuries are ABIs, but not all ABIs are traumatic. Read on to find out what that means, and learn how our FDA-cleared EksoNR© robotic exoskeleton can help with recovery.

What Is an Acquired Brain Injury?

The Brain Injury Association of America defines an acquired brain injury as one that is “not hereditary, congenital, degenerative, or induced by birth trauma.” The injury changes the way neurons in the brain activate, ultimately altering the structure and function of brain cells.

ABIs can be traumatic or non-traumatic. The distinction is the cause of damage and whether it comes from inside or outside the body.

Traumatic Brain Injuries

A traumatic brain injury is a change in brain function due to an external force. An estimated 5.3 million people in the U.S. live with TBI-induced long-term disability, and up to 90,000 people join that cohort every year. The leading causes of TBI are:

  • ‌Motor vehicle accidents
  • ‌Suicidal attempts
  • ‌Gun assaults
  • ‌Falls

A TBI may develop from either a closed or open head injury or brain movement inside the skull.

An open injury penetrates the dura mater, the outermost membrane surrounding the brain and spinal cord. The penetrating object may be an external projectile or a broken piece of skull that enters the brain due to impact.

Closed (non-penetrating) injuries damage the brain without penetration of the skull or dura mater. These injuries can lead to dangerous intracranial pressure as the brain swells without room to expand. This swelling can cause further brain damage and increase the TBI’s severity.

A TBI may also develop if an incident jostles the brain within the skull. This is called traumatic inertial or non-contact injury. Falls, car accidents, and sports injuries are common causes of traumatic inertial injury.  

Non-Traumatic Brain Injuries

Non-traumatic brain injuries develop due to internal processes. Some arise suddenly, as in the case of oxygen deprivation. Others develop gradually due to illness or prolonged toxin exposure. Causes of non-traumatic brain injuries include:

  • ‌Stroke
  • ‌Aneurysm
  • ‌Brain tumor
  • ‌Infectious disease (encephalitis, meningitis, and others)
  • ‌Near-drowning
  • ‌Ongoing substance abuse

Effects of Acquired Brain Injuries

The effects of an ABI, whether traumatic or non-traumatic, depend on the brain damage’s location and severity. Many ABIs affect multiple body systems, including:

  • ‌Thinking and behavior
  • ‌Speech
  • ‌Sensory abilities
  • ‌Perception

‌ABIs, including TBIs, often result in impairments to a person’s mobility and activities of daily living. Recovery can be a long journey for patients and their family members, but our EksoNR exoskeleton for patients who have lost mobility or function can help many patients recover more completely.

Rehabilitation for Brain Injury

Treatment for an acquired brain injury can begin as soon as a medical professional has diagnosed the extent and effects of the illness or injury. Diagnosis typically involves scanning technology like computed tomography (CT) and magnetic resonance imaging (MRI).

‌Once the care team has confirmed the person to be medically stable, their rehabilitation can begin. Rehabilitation for brain injury involves some to all of the following components:

  • ‌Physical therapy
  • ‌Occupational therapy
  • ‌Speech-language therapy
  • ‌Neuropsychology

‌The goal is to help the person regain as many lost abilities as possible. EksoNR fits into the physical therapy aspect of rehabilitation.

EksoNR Robotic Exoskeleton

EksoNR helps people with ABI retrain their muscles and start walking again, using the power of brain plasticity. It’s the first and only wearable robotic skeleton to receive FDA clearance for ABI rehabilitation.

To use EksoNR, the patient wears a “backpack” supporting their torso connected to a robotic leg-support structure. The structure attaches comfortably to the patient’s waist, hips, legs, and feet, supporting their weight and joints. While wearing our robotic legs and following PT guidance, patients with ABI can work on vital skills like:

  • ‌Orientation to midline
  • ‌Weight shit
  • ‌Stepping quality
  • ‌Lower extremity muscle strength

The system features smart data capture and clinician controls so that medical professionals can customize their sessions to patient needs in real-time.

Physical therapists and other clinicians can use EksoNR at any stage of inpatient or outpatient rehabilitation. It can help someone stand up for the first time and take their first steps after ABI. 

As a person learns to walk again, EksoNR retrains their brain and muscles. It can also help someone with fine-tuning their walking skills, as they learn to regulate their movements and improve gait quality. 

Ekso Bionics: Improving Natural Movement with Bionics

To date, Ekso Bionics has positively impacted the lives of thousands thanks to over a decade of experience in the world of wearable bionics. Our wearable robotic exoskeleton is revolutionizing human potential in a variety of ways, all of which have already started to have a lasting impact on a broad array of fields. While many robotics companies are focused on developing bionics to help those dealing with paralysis or other movement-based disorders in  rehabilitation, Ekso has invested our knowledge and expertise in finding multiple ways for our bionics to be utilized beyond just rehab.

Ekso Bionics is, therefore, not only focused on helping those who have lost mobility due to health events but is also focused on increasing the human potential for movement in a variety of ways for able-bodied individuals. From rehabilitation to pioneering ways for workers to operate more safely and protect their bodies in the process, Ekso Bionics is revolutionizing the field of wearable robotic technology with our focus on improving humans’ natural movement potential in safe, efficient, and dynamic new ways. Keep reading for an overview of just a few of the applications that Ekso Bionics is helping to pioneer.

Robotic exoskeletons by Ekso are a technological way to improve quality of life.

While Ekso’s exoskeleton applications aren’t limited to medical settings, many physical therapists are using wearable robotic exoskeleton technology to help patients regain movement and other abilities that have been lost. Whether patients have had a spinal cord injury or were dealing with the after-effects of a stroke, EksoNR© neurorehabilitation suit was the first exoskeleton suit of its kind to be cleared by the FDA to address these mobility related issues. Beyond spinal cord injury (SCI) use and use in patients post-stroke, EksoNR is also the only robotic exoskeleton that has been cleared by the FDA to have potential benefits for those facing acquired brain injuries.

These sorts of rehabilitative features of exoskeletons and EksoNR, in particular, are major. Being supported by the Food and Drug Administration means that these devices can be freely applied to rehabilitation programs that allow wearers to work on increasing and enhancing mobility. Rehabilitation centers have continued to help patients through the use of EksoNR to work on gait training and other skills that patients may need to re-learn after a traumatic SCI or stroke.

EksoNR builds upon the progress that Ekso made with the Ekso GT to create a much more responsive exoskeleton with sensors and feedback that offer physical therapists a much more customizable approach to using the device in conjunction with physical therapy sessions. It was Ekso’s ongoing commitment to logistics and technological advancement in the field of robotics, not to mention our years of experience, that allowed us to pioneer such an exoskeleton.

Industrial exoskeletons help to prevent fatigue and improve endurance.

While Ekso’s clinical expertise has resulted in the only exoskeleton to be cleared by the FDA for brain injuries in addition to patients with spine injuries or strokes, people and businesses are also using our exoskeleton designs to help boost human performance in other ways. There are plenty of fields and occupations where the risk of injury is quite high if the proper steps are not followed. Even then, some workplace injuries are going to happen from overworking or repetitive movements. The human body can only withstand so much, even if it is in peak physical shape, driving Ekso to build an exoskeleton designed for industrial applications.

For example, Ekso sees potential for our exoskeleton models to be used in a broad array of construction and manufacturing tasks and not just in rehabilitation clinics with physical therapists. Many manufacturing lines still require a human element, and these sorts of human-powered lines run the risk of overuse injuries due to the rigorous, physical nature of the job. The EksoVest was one solution our wearable robotics company pioneered that gained traction in major companies like Ford and Boeing. The fact that these companies recognized the value offered by the EksoVest is clear, and science backs up these findings, too. Many estimates show that the injuries that come from overhead lifting, shoulder, and neck strain can be prevented by the use of the EksoVest and now, EVO, which aids in the performance of these tasks.

Not one to rest on laurels, our company launched the next generation of wearable robotics in 2020 called EVO, which builds upon the success EksoVest has had since 2016. With five years of experience and customer feedback onthe EksoVest, EVO offers increased safety and more efficient performance to construction workers, as well as those on manufacturing lines. With improved materials and a more customized fit, EVO is much more comfortable to use for an extended period of time. EVO is also more affordable for companies to adopt it to use in a variety of industrial applications, which not only helps protect workers, but also improves a business’s bottom line.

Robotics and exoskeleton technology are changing the way the world works in a variety of ways. From offering medical breakthroughs to increasing safety in physically demanding jobs, people are able to live and work better thanks to the presence of wearable exoskeletons. Throughout all of these cases, Ekso Bionics has been a pioneer, using its skills and expertise to continue pushing the world of wearable robotics forward. By leveraging technology and humans’ existing potential, we are finding ways to help the medical profession and manufacturing and construction industries evolve in previously unthinkable ways. Thanks to partnerships with world-renowned businesses and thought leaders in these fields, our company continues to find ways to help exoskeletons evolve to meet the growing demand for such applications. Since 2005, Ekso has been making significant contributions, not only to the world of robotics, but to the lives and livelihoods of real people all across the globe.